Approximation Capabilities of Interpretable Fuzzy Inference Systems
نویسندگان
چکیده
Many studies on modeling of fuzzy inference systems have been made. The issue of these studies is to construct automatically fuzzy inference systems with interpretability and accuracy from learning data based on metaheuristic methods. Since accuracy and interpretability are contradicting issues, there are some disadvantages for self-tuning method by metaheuristic methods. Obvious drawbacks of the method are lack of interpretability and getting stuck in a shallow local minimum. Therefore, the conventional learning methods with multi-objective fuzzy modeling and fuzzy modeling with constrained parameters of the ranges have become popular. However, there are little studies on effective learning methods of fuzzy inference systems dealing with interpretability and accuracy. In this paper, we will propose a fuzzy inference system with interpretability. Firstly, it is proved theoretically that the proposed method is a universal approximator of continuous functions. Further, the capability of the proposed model learned by the steepest descend method is compared with the conventional models using function approximation and pattern classification problems in numerical simulation. Lastly, the proposed model is applied to obstacle avoidance and the capability of interpretability is shown.
منابع مشابه
A NOTE TO INTERPRETABLE FUZZY MODELS AND THEIR LEARNING
In this paper we turn the attention to a well developed theory of fuzzy/lin-guis-tic models that are interpretable and, moreover, can be learned from the data.We present four different situations demonstrating both interpretability as well as learning abilities of these models.
متن کاملNeuro-fuzzy control of bilateral teleoperation system using FPGA
This paper presents an adaptive neuro-fuzzy controller ANFIS (Adaptive Neuro-Fuzzy Inference System) for a bilateral teleoperation system based on FPGA (Field Programmable Gate Array). The proposed controller combines the learning capabilities of neural networks with the inference capabilities of fuzzy logic, to adapt with dynamic variations in master and slave robots and to guarantee good prac...
متن کاملA Flexible Link Radar Control Based on Type-2 Fuzzy Systems
An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...
متن کاملMining Efficient and Interpretable Fuzzy Classifiers from Data with Support Vector Learning
Abtract: The construction of fuzzy rule-based classification systems with both good generalization ability and interpretability is a chalenging issue. The paper aims to present a novel framework for the realization of these important (and many times conflicting) goals simultaneously. The generalization performance is obtained with the adaptation of Support Vector algorithms for the identificati...
متن کاملA Neuro-Fuzzy Approach to Obtain Interpretable Fuzzy Systems for Function Approximation
Fuzzy systems can be used for function approximation based on a set of linguistic rules. We present a method to obtain the necessary parameters for such a fuzzy system by a neuro-fuzzy training method. The learning algorithm is able to determine the structure and the parameters of a fuzzy system from sample data. The approach is an extension to our already published NE-FCON and NEFCLASS models ...
متن کامل